Inertia ( IDataHolder data , int length );    
Description
Draws the linear regression curve using the least-squares method to approximate data for each set of bars defined by the length parameter. The resulting interpolation function for each set of bars is defined by equation: y = a * current_bar + b . See the following example for details. 
Input parameters
| Parameter | Default value | Description | 
|---|---|---|
| data | - | Defines the variable for which the linear regression curve is calculated. | 
| length | - | Defines the period on which the approximation method is applied. | 
Example
script inertiaTS {
    input y = close;
    input n = 20;
    def x = x[1] + 1;
    def a = (n * Sum(x * y, n) - Sum(x, n) * Sum(y, n) ) / ( n * Sum(Sqr(x), n) - Sqr(Sum(x, n)));
    def b = (Sum(Sqr(x), n) * Sum(y, n) - Sum(x, n) * Sum(x * y, n) ) / ( n * Sum(Sqr(x), n) - Sqr(Sum(x, n)));
    plot InertiaTS = a * x + b;
}
input length = 20;
plot LinReg1 = Inertia(close, length);
plot LinReg2 = InertiaTS(close, length);
    
    
Draws the linear regression plot for the close value for the defined set of bars.